Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Virol Plus ; 2(3): 100081, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35540180

RESUMEN

Background: Detecting SARS-CoV-2 using a simple real time molecular assay will be helpful for the mitigation efforts in low / middle income countries during the pandemic. We have developed and validated a rapid and simple real time loop mediated isothermal amplification assay (LAMP) for screening of SARS-CoV-2 infection in known infected and non-infected individuals. Methods: Six sets of primers were designed targeting the N-gene of the SARS-CoV-2 (Accession ID MN994468). LAMP reactions were performed using Warm Start 2X Master Mix and real-time PCR machine at 65 °C for 60 cycles with 15 s for each cycle. Results were read by visualizing turbidity under ultraviolet light and real time fluorescence detection through FAM channel of the real time PCR machine. We tested a total of 320 including 240 SARS CoV-2 positive (Ct values <40) and 80 SARS CoV-2 negative samples as tested by a real time RT-PCR using the newly developed LAMP assay. Results: A total of 206 out of 240 SARS CoV-2 positive samples were tested positive by the newly developed LAMP assay with a sensitivity of 86%. All 80 SARS CoV-2 negative samples were tested negative by the newly developed LAMP assay with a specificity of 100%. Conclusion: The newly developed real time LAMP assay has a sensitivity of 86% and specificity of 100% compared to the real time RT-PCR for the detection of SARS CoV-2. The new assay will be useful to screen large number of samples if adopted to minimize the time and cost.

2.
Insects ; 9(3)2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30096752

RESUMEN

Mosquitoes live under the endless threat of infections from different kinds of pathogens such as bacteria, parasites, and viruses. The mosquito defends itself by employing both physical and physiological barriers that resist the entry of the pathogen and the subsequent establishment of the pathogen within the mosquito. However, if the pathogen does gain entry into the insect, the insect mounts a vigorous innate cellular and humoral immune response against the pathogen, thereby limiting the pathogen's propagation to nonpathogenic levels. This happens through three major mechanisms: phagocytosis, melanization, and lysis. During these processes, various signaling pathways that engage intense mosquito⁻pathogen interactions are activated. A critical overview of the mosquito immune system and latest information about the interaction between mosquitoes and pathogens are provided in this review. The conserved, innate immune pathways and specific anti-pathogenic strategies in mosquito midgut, hemolymph, salivary gland, and neural tissues for the control of pathogen propagation are discussed in detail.

3.
PLoS One ; 12(1): e0166806, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28068339

RESUMEN

Dengue is one of the major hurdles to the public health in Sri Lanka, causing high morbidity and mortality. The present study focuses on the use of geographical information systems (GIS) to map and evaluate the spatial and temporal distribution of dengue in Sri Lanka from 2009 to 2014 and to elucidate the association of climatic factors with dengue incidence. Epidemiological, population and meteorological data were collected from the Epidemiology Unit, Department of Census and Statistics and the Department of Meteorology of Sri Lanka. Data were analyzed using SPSS (Version 20, 2011) and R studio (2012) and the maps were generated using Arc GIS 10.2. The dengue incidence showed a significant positive correlation with rainfall (p<0.0001). No positive correlation was observed between dengue incidence and temperature (p = 0.107) or humidity (p = 0.084). Rainfall prior to 2 and 5 months and a rise in the temperature prior to 9 months positively correlated with dengue incidence as based on the auto-correlation values. A rise in humidity prior to 1 month had a mild positive correlation with dengue incidence. However, a rise in humidity prior to 9 months had a significant negative correlation with dengue incidence based on the auto-correlation values. Remote sensing and GIS technologies give near real time utility of climatic data together with the past dengue incidence for the prediction of dengue outbreaks. In that regard, GIS will be applicable in outbreak predictions including prompt identification of locations with dengue incidence and forecasting future risks and thus direct control measures to minimize major outbreaks.


Asunto(s)
Clima , Dengue/epidemiología , Brotes de Enfermedades , Densidad de Población , Vigilancia de la Población , Dengue/prevención & control , Dengue/transmisión , Dengue/virología , Ambiente , Sistemas de Información Geográfica , Geografía Médica , Humanos , Humedad , Incidencia , Factores de Riesgo , Estaciones del Año , Sri Lanka/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...